
Journal o f  Statistical Physics, Vol. 78, Nos. 5/6, 1995 

The Chiral Potts Model and 
Its Associated Link Invariant 

F. Y. Wu, 1 p. Pant, 1 and C. King 2 

Received June 20, 1994 

A new link invariant is derived using the exactly solvable chiral Potts model and 
a generalized Gaussian summation identity. Starting from a general formulation 
of link invariants using edge-interaction spin models, we establish the unique- 
ness of the invariant for self-dual models. We next apply the formulation to the 
self-dual chiral Potts model, and obtain a link invariant in the form of a lattice 
sum defined by a matrix associated with the link diagram. A generalized 
Gaussian summation identity is then used to carry out this lattice sum, enabling 
us to cast the invariant into a tractable form. The resulting expression for the 
link invariant is characterized by roots of unity and does not appear to belong 
to the usual quantum group family of invariants. A table of invariants for links 
with up to eight crossings is given. 

KEY WORDS: Link invariants; chiral Potts model; generalized Gaussian 
summation identity. 

1. I N T R O D U C T I O N  

Knot s  and  l inks are e m b e d d i n g s  of  circles in R 3 descr ibed  by their  projec-  

t ions o n t o  a plane. As p ro jec t ions  change  thei r  conf igura t ions  when  the 

e m b e d d e d  circles are  de fo rmed  in R 3, it is per t inen t  to ask wha t  is being 

preserved  in the process  of  de fo rmat ion .  Obv ious ly ,  wha t  is be ing  preserved  

is intr insic  to the t o p o l o g y  of  the link, and  this leads to the cons ide ra t i on  
of  l ink invar iants .  

L ink  invaria,nts are  a lgebra ic  quant i t i es  assoc ia ted  with  p l ana r  projec-  

tions, which  r ema in  u n c h a n g e d  when  the links are  deformed.  An exci t ing 
recent  d e v e l o p m e n t  in the theory  of  kno t s  is the rea l iza t ion  that  l ink 

invar ian ts  can  be ob t a ined  f rom exact ly  so lvable  mode l s  in s tat is t ical  
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mechanics (for reviews of this development see refs. 1-3). Indeed, using 
solvable models in two dimensions, it has been possible to generate all 
known link invariants of the quantum group family, including the Jones ") 
and the Homily 15) polynomials. More recent developments on spin models 
and link invariants can be found in refs. 6-11. 

In a recent letter ~e) we reported a new link invariant derived from the 
solvable chiraI Potts model ~13"14~ and evaluated using a generalized 
Gaussian summation identity. 115~ The new invariant, which was earlier 
defined by Kobayashi et  al. ~16) without explicit evaluations, is in the form 
of a polynomial of roots of unity. In view of its novelty and the intimate 
relation with the Gaussian summation identity, it seems useful to provide 
details of our analysis. This is the purpose of the present paper. In addition, 
we also present a general duality consideration, a discussion of some 
properties and relations of our invariant to other known polynomial 
invariants, and a table of the invariant for links with eight or fewer 
crossings. 

This paper is organized in the following manner. In Section 2 we recall 
the formulation of link invariants using edge-interaction models, paying 
particular attention to models with chiral interactions. In Section 3 we 
present the formulation of a duality relation for general edge-interaction 
spin models and show that it leaves unchanged the invariant derived from 
self-dual models. In Section 4 we recall the solvable chiral Potts model, 
and a certain infinite-rapidity limit of its vertex weights is introduced in 
Section 5. Section 6 deals with the detailed evaluation of invariants. We 
derive the Skein relation satisfied by the invariant and discuss relations 
with other known invariants in Section 7. Several technical points and some 
properties of the invariant are discussed in Section 8. In particular, we 
establish the identity of the invariant with its mutant, a result we extend to 
any invariant derivable from edge-interaction spin model. In Appendix A 
we describe the summation identities known as the Gaussian summation 
formula. A table of invariants for all links with up to eight crossings is 
given in Appendix B. 

2. LINK I N V A R I A N T S  FROM EDGE- INTERACTION MODELS 

Link invariants can be generated from solvable two-dimensional 
models in statistical mechanics, t~-3~ Here, we briefly review the formulation 
involving edge-interaction models. 

Starting from a link K which we assume to be oriented, one constructs 
a directed lattice .~' by regarding lines of the link as lattice edges and line 
crossings as lattice vertices. This leads naturally to two types of vertices, + 
and - ,  corresponding to the two kinds of line crossings + and - in the 



Chira! Potts Model 1255 

u + ( a - b )  u _ ( a - b )  
b b 

a a 
U+(a-b) fi_(a-b) 

Fig. 1. The + and - line intersect ions associated with two kinds of shadings  that  can occur 
at  a vertex and the vertex weights. 

link as shown in Fig. 1. Now the lines divide faces of .L# into two subsets, 
with one subset neighboring only faces of the other subset, and vice versa. 
This permits us to introduce a spin model with spins residing in one subset 
of the faces and interactions extending across the line intersections. The 
spins and the interactions form a line graph G. To help one to visualize, it 
is customary to shade the faces in which the spins reside. ~17) Then, the line 
graphs for the two different shadings are mutually dual. The example of the 
two different face shadings for the link 8~5 is shown in Fig. 2. Note that 
there exist four distinct types of line crossings and, consequently, four types 
of spin interactions. These four different configurations, shown in Fig. l, 
possess weights 

u• ff• (1) 

where a, b =  1, 2,..., N are the spin states of the two interacting spins. 
Here, we have assumed quite generally that the interactions can be chiral, 
namely, u• can be different from u+_(-a). The example of the two line 
graphs for the link 8~5 is shown in Fig. 2 with the type of interactions 
explicitly noted. 

Let Z(u• ~• be the partition function of the spin model for a given 
face shading. Then, the formulation of link invariants using spin models tl' ~1 
dictates that Z(u+, ~+) is a link invariant, provided that the Boltzmann 
weights satisfy certain conditions imposed by Reidemeister moves/~81 
Reidemeister moves are elementary moves of lines in the knot projection 
when links are deformed in R 3. The possible Reidemeister moves that can 
occur are those shown in Fig. 3, where for each line movement we must 
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~+~U4_ U+ U+ 

5 4 U+ 
Fig. 2. The two different kinds of face shadings and the associated line graphs for the link 

8~5, where the interaction types are explicitly noted. 

allow the two possible kinds of face shadings. The desired Reidemeister 
conditions can be read off from the figure, leading to 

if_+(0) = 1 (2a) 

1 N-I  
~= u+(a--b)=l (2b) 

N / ~ b  O -- 

u +(a-b) u_(a-b)= 1 (2c) 

1 N-I  
b~ ~+(a-b) ff_(b-c)=6,,,. (2d) 

~+(a-b)a ( b - a ) = l  (2e) 
1 N-- I  

bY'O= u + ( a  -- b) u (c - b) = 6.c (2f) 

1 N- - I  
u_(a-d ) f f_ (b -d ) f t+(d-c )=f f  (b-c)  u_ (a -c )u+(a-b )  

N / ~  d = O 

(2g) 

Provided that conditions (2a)-(2g) are met, the quanti ty 

IK(N) = NIc~ 21/'-Z(u+_, if• ) (3) 

where S is the number  of spins (shaded faces) in ~ and co is the number  
of connected components  of the line graph associated with the other (dual) 



Chiral Pot ts  Mode l  1257 
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(a) (b) 

(~) (d) 
c 

= ,p~ = 

(e) (f) 

(g) 

Fig. 3. Reidemeister moves for oriented knots with two different kinds of face shadings. 

choice of face shading, is an invariant for the link K. ~' ~2, Note  that co = 1 
for connected ~ .  Note also that the normalization of (3) has been taken 
to be l~,k,o,(N)= 1. 

3. DUALITY RELATION FOR SPIN MODELS 

In this section we present the formulation of a general duality relation 
for two-dimensional edge-interaction spin models in a form suitable for our 
consideration. 

Consider an N-state spin model on a line graph G with S sites. The 
spins interact with a generally chiral interaction uo.(a-b) along the lattice 
edge {i , j}  connecting sites i and j in respective spin states a and b. 
Consider the dual model whose spins are on the dual graph Go, with So 
sites and with interactions 

whose inverse is 

where co = e 2ni/N. 

1 N 
u(D)(rl) ~ - " ~  m~= l (A)mnu(17"I) 

1 N 
u ( n ) : ~  Z CO ..... u(D)(nl) 

x / N  . . . .  , 

(4) 

(5) 

822/78/5-6-5 
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Let c and co be the respective numbers of connected components of G 
and Go. (For connected lattices we have c = c o = l . )  Let Z({u}) and 
Z ( m [ { u  r176 ] be the respective partition functions of the spin models on G 
and G D. Then, following Wu and Wang, c~9) one establishes the identity 

Z({u}) = N ~- S~zr176 {x//N u~m} ~ (6) 

where the partition function on the right-hand side of (6) is defined with 
interactions x / ~  u cm in place of u ~m. Using the Euler relation generalized 
to disjoint graphs 

S + So =c  + co + E (7) 

where E is the number of edges (which is the same for G and Go), one 
obtains 

N~cD- s -  z)/2Z( { u } ) = Nc~- sD- 2)/2ZW)[ { u~m } ] (8) 

This is the desired duality relation. 
For chiral interactions for which lattice edges are directed, the orienta- 

tion of a lattice edge on Go is that of the corresponding lattice edge on G 
rotated 90~ 19~ Furthermore, the shading of the other set of faces, namely, 
choosing spins to reside in the other set of faces, corresponds to the inter- 
change of u• ~ tT• (cf. Fig. 1). Therefore, a ff interaction on G corresponds 
in the dual space to a u ~  ) interaction, and a u interaction on G 
corresponds on GD to a fflff). This leads to the duality relation 

NCc~ ft•176 u~+~ )] (9) 

It follows that for self-dual models satisfying a ~ = u •  u~)=fi_+, the 
invariant (3) evaluated using either scheme of face shading is identically the 
same. This conclusion applies to both the chiral and nonchiral self-dual 
models. 

4. T H E  C H I R A L  POTTS M O D E L  

The N-state chiral Potts model is a spin model whose Boltzmann 
weights W(n) and ff'(n) are chiral and N-periodic. Namely, quite generally 
we have W ( - n ) v ~ W ( n )  and f f ' ( -n )q : f f ' ( n )  and the equalities 
W(n) = W(n + N) and i f ( n ) =  ff'(n + N). An important recent advance in 
two-dimensional lattice statistics has been the discovery of an exact 
integrable manifold of the chiral Ports model. ~t3, ~4~ In the notation of 
ref. 14, the integrable vertex weights are best described by introducing 
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b 

, 'o , X :  ob : : 
p,..'" "'..,q p.'" "' .q 

a 
Wpq(a-b) Wpq(a-b) 

Fig. 4. Auxiliary lines defining rapidities for the chiral Potts model and the vertex weights. 

rapidities ap, bp, Cp, dp to auxiliary lines drawn as shown in Fig. 4. The 
rapidities satisfy the N-periodicity condition 

a;+_b; 
CP u • d~ v - 2 • independent o f p  (10) 

Then the weights can be written, for 0 ~< n ~< N -  1, as 

Wpq(rt) = f i  dpbq - apCqO9 j 
gpq(rl) ~ Wpq(O) j~__'t 1 bpdq -- Cpaq(D ~ 

gPq(rt)=-- ~ cpbq-bpcq OJ7 j=l 

The weights (11) satisfy the relations 

(11) 

gpp(n) = 1, ~pp(n) = 3,m 

gpq(O) = ~pq(O) = 1 

gpq(a --  b)  gqp(a - b)  = 1 

(12a) 

( lZb) 

(12c) 

and the Yang-Baxter  equation 

N--I 

Z 
d=O 

W p r ( a - d )  f f ' q ~ ( b - d )  f f / p q ( d - c )  

= Rpq r lZVpr(b - c)  Wqr(a - c)  Wpq(a - b)  (12d) 

where 

epor =fpqfqr/f.r 
N--I 

j 

(13) 
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For 

c p = d p  = 1 

Nq_ N ap bp = I = const 

the model is self-dual 12~ and f t ,  q is independent of p and q. 

(14) 

5. T H E  I N F I N I T E - R A P I D I T Y  L I M I T  

To generate link invariants we need first to identify the weights u_+ 
and ~_+ appearing in (2a)-(2g). Comparing (2) with (12), one observes that 
an obvious choice is {u+, u ,  if+, if_ } ~ {gpq, g,n,, g,t,q, g,n,}" This leads us 
to introduce the infinite-rapidity limits 

u + ( n ) = A +  lim gpq(n), u _ ( n ) = A _  lim gpq(n) 
b p  ~ eL b q  ~ 9c  

6 + ( n ) = B +  lim gpq(n), ~ _ ( n ) = B _  lim g,q(n) 
b p  ~ Zs b q  ~ c~ 

(15) 

where A+ and B e are constants to be determined. It turns out that condi- 
tions (2a)-(2g) can be satisfied for the self-dual model (14) with I = 0 .  This 
leads us to write 

ap = o f f - l /2bp  (16) 

where l is an integer, and 

u + ( n )  = A +( - 1)" co +~'a+'2/z) 

ff+(n) = B + ( -  1)" co 'a-v-'2/2 
(17) 

While (17) is defined for 0 ~ < n ~ < N - l ,  it follows from the N-periodic 
property that it holds for all n (positive or negative). Note that these 
weights are chiral for 1 :~ 0. 

From (2a) and using the Gaussian summation identity (A2) with 
M =  1 in Appendix A to evaluate (2b), one obtains 

A +_ = ( - - 1 ) t  og +/"/2 e +i'~u 1~/4 
(18) 

B+=I 

It can then be verified that conditions (2c)-(2g) are now all satisfied by 
(17) and (18). It can also be verified from (4) that we have 

u~gl(n) = ~+_ ( - n )  

~l+~ ~(n) = u • ( , )  
(19) 
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Fig. 5. Example of a shaded polygon showing one source and one sink of arrows around its 
perimeter. 

Thus, as discussed at the end of Section 3, the invariant Ix(N) is inde- 
pendent of the face shading chosen. This is the desired result. 

The invariant Ire(N) is also independent of l in (16). To see this, we 
observe from the second line of(17), which now holds for all n, that the 
f i e ( a - b )  interaction between spin states a and b contributes to the 
summand of the partition function an/-dependent  factor co~"co -~b. The two 
factors in this product can be split and associated separately to the two 
corners of the two shaded polygons meeting at the line crossing (cf. the 
second row of Fig. 1). Next we collect these factors for each polygon. 
Let the spin state of a shaded polygon be a. Then, to each corner of the 
polygon with two outgoing (incoming) arrows [source (sink) of arrows] 
we have a factor ~o -~" (cota). As demonstrated in the example shown in 
Fig. 5, there is always an equal number of sources and sinks around a 
polygon. Thus, the /-dependent factors around each polygon cancel out 
and, as a result, the link invariant It~(N) does not change its value if we 
set l =  0 in if• As discussed in Section 7 below, every link has a special 
projection in which all crossings are of the type ~_+. It follows that lie(N) 
is independent of L For self-dual models the dual of the u_+ weights are the 
t~_+ weights. Therefore, it also follows that we can set 1=0  in u• (when 
evaluated in the dual space), and hence deduce directly that IK(N) is 
independent of/. 

Finally, combining (17) with (18) and l = 0 ,  we arrive at the expres- 
sions 

u+_(n)---- ( - -  l ) "  e + i ( N -  l)n/4 (.0 • 

if+ (n) = ( - 1 )" eo z-,,-'/-, (20) 

which are nonchiral. The substitution of (20) into (3) leads to the desired 
link invariants. I t  is interesting to observe that the chirality of the weights 
(17) is irrelevant in the resulting invariants. 

6. EVALUATION OF KNOT I N V A R I A N T S  

The link invariant Ix(N) for a link K is evaluated by substituting (20) 
into (3). Noting that the essential difference between the weights u and ff in 
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2 

6 5 

+ 

Fig. 6. Signed graphs correspond to the two possible face shadings of the link 815 shown 
in Fig. 2. 

(20) is the sign of the factor n2/2 in the exponent,  it is useful to note 
explicitly this sign, + or - ,  on the line graph, and this leads us to consider 
the signed graph associated with a face shading. Specifically, to each edge l 
in a line graph G, we assign a number  e~ = _ 1 according to the following 
rules: if the associated line crossing is of type iT+ or u _ ,  assign e~= + 1; if 
the crossing is of type iT_ or u §  assign et = - 1. The example of the two 
signed graphs associated with the line graphs for the link 8125 of Fig. 1 is 
shown in Fig. 6. Note  that  this sign is determined by the face shading only, 
independent of the orientat ion of lines in .~'. Thus, our choice of the sign 
agrees with that  of Fig. 48 of ref. 3. 

To  facilitate bookkeeping,  we now introduce an S x S  (incidence) 
matrix Q with elements 

Qij = ~ et, i ~ j 
t= <i.j> (21) 

ai i  = - ~, Qi~ 
k(v~i) 

where the summat ion  in the first line is over all edges 1 connecting the ith 
and j t h  sites. The matrix Q is obviously symmetric;  it also has the proper ty  
that  the sum of each row or column vanishes. Matrices possessing these 
properties are singular, all cofactors are equal, and the cofactors generate 
spanning trees of the graph G. ~211 

Let n = ( n l  ..... ns)  be an integer-valued vector whose components  
n; = 0, 1 ..... N -  1, i = 1 ..... S, denote the state of the i th spin on G. Fur ther  
introduce a vector z with components  zi = Qii/2, i = 1 .... .  S. Then the link 
invariant (3), after the substitution with (20), assumes the form 

s z~,2 V ni(N-4_l  ) ~(K)]  
I K ( N ) = N  ~c~ - / Lexp 

x ~ exp n.  (Qn) + 2~in.  z (22) 
r / i  , . . . ,  r /S  ~ 0 
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where ~(K) is the number of u§ weights minus the number of u_ weights 
in K. 

Due to the N-periodicity of Boltzmann weights, there is no loss of 
generality to fix one of the S spins, say, the Sth, in the spin state ns = O. 
Then the summation over ns in (21) gives rise to a factor N and one 
obtains 

I K ( N ) = N  ~co-s)/2 exp 4 

x ~ exp N n .  (Mn) + 2rcin.y (23) 
nh...,nS-| ~ 0 

where n and y are (S-1)-dimensional vectors, M is the ( S - 1 ) x  ( S - 1 )  
cofactor matrix of Q obtained by deleting the Sth row and column, and 
the summation is ( S -  1)-fold. Note that we have always 

N(2yi + Mii) = 2NMii = an even integer (24) 

The expression (23) subject to (24) can be evaluated using a 
generalized Gaussian summation formula given in Appendix A. Provided 
that the matrix M is nonsingular, using (A5) we find 

IK(N) = N ~c~ 1)/2 Lexp[- ~i(N--4_l) ~(K) e x p ~  1 "  

1 ~ e x p { _ n i N ( n + y , . l _ M _ l ( n + y ) ]  } (25) X ~ n ~ L  I 

where n = (n i ..... ns_ l), Y = (Y~, ..., Y s - ,  ), Y i  = M,/2 ,  D = I det M I, A is the 
fundamental domain (unit cell) of the lattice formed by the collection of 
vectors Mn, and q(M) is the signature of M, namely, the number of 
positive eigenvalues minus the number of negative eigenvalues. Note that N 
now appears as a parameter, instead of a summation limit, in (25). The 
expression (25) completes the evaluation of IK(N). 

It is instructive to illustrate the evaluation of(25) for the link 8~5 
shown in Fig. 1. The two signed graphs corresponding to the two different 
face shadings are shown in Fig. 6, from which one obtains the matrices 

�9 

--2 --1 1 0 0 
--1 2 0 --1 

M =  I 0 - 2  1 0 , 
0 - - 1  1 1 
0 0 0 1 - 

-!) 1 2 

0 -  
- -  - - 2  

(26) 
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for the two shadings, respectively. In the first case one finds further 
( ( K ) =  - 2 ,  q (M)=  - 3 ,  0 = 8 ,  A = ( - 2 ,  1,0, 0 , - 1 ) ,  ( - 1 , 0 , - 1 ,  1 , - 1 ) ,  
( - 1 , 0 , 0 , 0 , 0 ) ,  ( - 1 , 1 , 0 , 0 , - - 1 ) ,  ( - 1 , 1 , - 1 , 0 , 0 ) ,  ( 0 , 0 , - 1 , 1 , - 1 ) ,  
(0, 0, 0, 0, 0), and (0, 1, - 1 ,  0, 0). In the second case M is a 3 x 3 matrix. 
One finds ( ( K) =2 ,  r / ( M ) = - 3 ,  3 = 8 ,  d = ( - 2 ,  - 1 ,  2), ( - 1 , - 1 , 1 ) ,  
( - 1 , 0 , 0 ) ,  ( - 1 , 0 ,  1), ( 0 , 0 , - 1 ) ,  (0 ,0 ,0 ) ,  (0, 1 , - 2 ) ,  and (1, 1 , - 3 ) .  In 
either case, (25) yields the invariant 

IK(N) = 1_~ e_,~/4 (1 + e -7nm/8 + e -3niN/2 + e-15~iu/8) 
,/2 

We have used a computer program to compute invariants from (25). 
Generally, for a given link K with a given orientation, the matrix M and 
the number ~(K) can be read off from the link diagram and are used as 
inputs. The computer then searches for all sites in the fundamental 
domain A and evaluates (25) term by term. We include in Appendix B a 
table of invariants for all links with eight or fewer crossings. We note that 
our invariant assumes the same form for some links. Examples are the 
pairs {62,7,_}, {63,81}, {75,82}, {86,87}, {81o, 811}, {812,813}, and 
{7~, w(K)= - 1 ;  4 2 , w(K)=4}.  

7. RELATIONS TO OTHER I N V A R I A N T S  A N D  SKEIN 
RELATIONS 

The matrix M occurring in (22) has been used in previous studies of 
link invariants, in particular by Goeritz, ~221 and has come to be known as 
the Goeritz matrix, c23~ Traldi ~24~ introduced an extension of M, which he 
called the modified Goeritz matrix, and this was the starting point for 
Kobayashi et al., 116} who built their invariant Tu(K) from this matrix. As 
alluded to in Section 1, TN(K) turns out to be identical to IK(N), although 
in a different form and without an explicit evaluation. The Goeritz matrix 
is also related to the Seifert matrix of the link. For completeness, we briefly 
define relevant notions and describe some related results. 

Consider an oriented link diagram with a shading, where the infinite 
region is one of the shaded regions. Denote by So, cq ..... ~p these shaded 
regions, where p = S -  1 and c% is the infinite region. Denote by /3~ ..... /~q 
the regions in the dual shading. The diagram is a special projection if the 
following conditions are satisfied: 

(i) All/3-regions have consistently oriented boundaries. 

(ii) All fl-regions are topological disks, without holes. 
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It is not difficult to show that every link has a special projectionJ TM 
Since the link diagram is the projection of a link in space onto a plane, we 
may consider the //-regions in a special projection as the projection onto 
the plane of an oriented surface in space, whose boundary is the link. This 
surface is the Seifert surface of the link. It follows that p = 2g, where g is 
the genus of the Seifert surface. 

Suppose we have a special projection of a link. Place spins in the 
(shaded) ~t-regions as described in Section2 and define the Q matrix 
associated with the projection as in Section 6. Omitting the infinite region 
c~ o reduces Q to the matrix M. Since each c~-region has an even number of 
boundary components, the diagonal entries of M are always even. Further- 
more, all crossings are now of type iT_+, so ( ( K ) =  0. Hence the invariant 
Ix(N) given by (25) reduces to the simple form 

I K ( N ) = N ~ W - l ) / Z [ e x p ~ l  1 ~ , ~ a  e x p ( - ~ z i N n . M - ' n )  (27) 

In this situation q(M) is itself a link invariant, and is called the signature 
of the link. As noted in ref. 12, D =  [A(-1)[ ,  where d(t)  is the Alexander 
polynomial. This fact can also be seen by considering a Seifert matrix as 
follows. 

Let ai be a simple closed curve on the Seifert surface which projects to 
a simple closed curve which encloses the region cti, in the positive direction, 
but does not enclose any other or-regions. Let a,:- be the "push-off," or a 
small displacement, of a~ from the surface in the direction opposite to the 
orientation of the surface. Then the Seifert matrix S is a p x p matrix whose 
( i , j ) th  element is the linking number of a 7 and aj for all 1 <<.i, j~p.(23) 
It is a straightforward calculation to show that M = S + S  r, where S r is 
the transpose of S. It is also known that the Alexander polynomial is 
A(t) = det(S r -  iS) and that the signature of the link is that of the matrix 
S + S  r. These results imply D =  [det MI = [A(--1)r. 

Since the matrix M in (23) can be expressed in terms of the Seifert 
matrix, it is natural to ask whether IK(N) contains different information 
than the Alexander polynomial A(t) and the signature invariant, which are 
also expressed in terms of the Seifert matrix. One example shows that the 
answer is yes. Let R denote the mirror image of K. Then, it can be verified 
that the four nonequivalent knots 6~, 6~, 946, and 946 share the same 
Alexander polynomial and signature. However, the invariant Ix(N) dis- 
tinguishes among 61, 6t, and 946 , although not between 946 and 946. On 
the other hand, the Alexander polynomial distinguishes the links {812, 8~3} 
for which Ix(N) is identical. 
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Finally, the invariants IK(N) satisfy a Skein relation. (~2) In particular, 
IK(2) and I t (3 )  are related to the Jones polynomial at special values. The 
Jones polynomial Vr(t)  is determined by the Skein relation 

t VK+(t) - tVK (t) = -- VKo(t) (28) 

where the links K+, K , and Ko differ only at one crossing, as shown in 
Fig. 7. For definiteness we choose the shading shown in Fig. 7. Then the 
corresponding partition functions Z+ ,  Z _ ,  and Zo differ only by the factor 
arising at this crossing, which is respectively u+(n), u_(n), or 1, where 
u+_(n) is given in (20). It is easy to show that the following identities hold 
for N = 2, 3: 

N = 2 :  u +(n )+u  (n)=x/~ ,  n = 0 , 1  
(29) 

N = 3 :  e-ni /6u+(n)+eni /6u_(n)  = 1, n = 0 ,  1, 2 

These imply the same relations for Z+ ,  Z _ ,  and Zo. Comparing with the 
Skein relation (28) for the Jones polynomial, we see that 

Ix(2) = ( -  1) c(m+' V r ( - i )  
(30) 

i r (3  ) = ( _  1)c~r)+ l Vx(e-ni/3)  

where c(K) is the number of components of the link K. The invariants (30) 
can further be related to the Homily polynomial P r ( t , z )  by using the 
identity ( -  1) ctKI +~ Vr(t)  = Px( - t, x / ~ -  1/x/~ ). 

As discussed in ref. 12, the invariants for higher values of N also satisfy 
certain Skein relations, but with higher-order crossings. For example, the 
invariant IK(4) satisfies 

IK,§ = -- ilK0(4) (31) 

where 2 + represents a crossing with two consecutive twists of the type u+ 
shown in Fig. 7. Generally, the invariant IK(N) satisfies a Skein relation 
connecting IKo(N), IK_(N), IK+(N) ..... Ixtum§ where IN/2] =N/2  for 

Fig. 7. 

2 +  + 0 

Line configurations that can occur at a line crossing for writing down the Skein 
relation. 
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N = e v e n  and [N/2]  = ( N - 1 ) / 2  for N = o d d ,  and n +  is a crossing of n 
consecutive twists of the type u§ The Skein relation is obtained by writing 
out the identity 

IN~2] 
u_(n) l-I [u+(n) -u+(p)]=o,  n = 0 , 1  ..... N - 1  (32) 

p = 0  

and making use of (2c). These relations, which are reminiscent of the Skein 
relations satisfied by the Akutsu-Wadati  polynomials, t25'3~ are not very 
useful for evaluating the invariant. 

8. D I S C U S S I O N S  

8.1. M i r r o r  Image and Or ienta t ion  Reversals 

The invariant for the mirror image of a link is obtained by taking the 
complex conjugation. This follows from the fact that, in a mirror image, 
one interchanges u + *--, u_,  ~ + ~ ~_,  and hence M ,--, - M, and by inspec- 
tion of(20) and (23) one finds that these changes induce only a complex 
conjugation. Also, since M is independent of line orientations, from (23) we 
see that the reversal of the orientation of individual components in a link 
introduces only an overall factor e i(N-IJn'~c/4, where A~ is the induced 
change of ~(K). 

8.2. Invariants for  Spl i t  Links 

In standard notation, a link K is split if it can be deformed so that a 
hyperplane in R 3 separates the link into two disjoint nonempty pieces, K~ 
and K2, say. By choosing the shading that leaves the infinite region 
unshaded as shown in Fig. 8, we see from a consideration of(3) that 

IK(N) = ~ IK=(N) IK2(N) (33) 

where the factor of x / ~  comes from the changes of co. It follows that 
IK(N) has a factor N ~'- 1)/2, where m is the number of disjoint pieces con- 
tained in the split link K. 

KI K~ KI#K2 

Fig. 8. Consideration of split and connected links. 
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8.3. Invariants for Connected Links 

The connected sum of two links K= and K2, the link K I # K 2 ,  is 
obtained by cutting open both links and joining them as shown in Fig. 8. 
Denote by K the disjoint union of links K~ and K2 before they are con- 
nected. By considering (3) with the infinite region shaded and using (33), 
one finds 

IK, # K2(N) = N - '/2lK (N) = Ix , (N)  IK,_(N) (34) 

Therefore, like the Jones and Homily polynomials, IK(N) factorizes over 
connected sums of links. 

8.4. M u t a n t  Links 

We next review the notion of mutant links (z6) and show that IK(N ) is 
unchanged under this operation. Suppose there is a simple closed curve in 
the plane which cuts a link K at four points only. By deforming the projec- 
tion, one can place the interior of the curve inside a box as shown in 
Fig. 9a, with the orientations of the four incoming and outgoing lines as 
indicated. The part of the link inside the box is called a tangle. If the four 
lines are cut and reconnected after a half twist is put on the incoming lines, 
and the opposite half-twist on the outgoing lines as in Fig. 9b, we get a new 
link R which is called a mutant of K. 

Suppose now that we calculate IK(N) by using (3). We choose the 
shading so that spins are placed in the regions on the left and right sides 
of the tangle. The orientations of incoming and outgoing lines of the tangle 

(a) (b) 

Fig. 9. (a) A tangle cut from a link K. (b) The tangle with two half twists added to its lines 
to be reconnected to K. 
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mean that  these are different regions. The summand  of the parti t ion func- 
tion for J~ has an extra factor u+(a-b)  u_(a-b) ,  where a and b are the 
spins in the left and right regions, respectively. By (2c), which comes from 
the Reidemeister move, this factor is 1. Hence the link K and its mutant  
have the same parti t ion function and the same invariant. 

Note  that  the above argument  is quite general and establishes the 
general result that an invariant  and its mutant  are identical, provided that  
the invariant is derivable from an edge-interaction spin model. In par-  
ticular, this applies to the Jones polynomial.  

8.5. Links w i t h  S ingular  M 

In writing down (25) we have assumed that the matrix M is non- 
singular, i.e., D es 0. Indeed, we find this condit ion satisfied by all links with 
eight or fewer crossings except 8~o and 84. Now the expression n.  (Mn) in 
the exponent  of the summand  in (23) is that of a quadrat ic  form over 
integral domains  of the S - 1  variables n;, and the condition D = 0  says 
that the quadrat ic  form is singular. It can be shown (see, e.g., ref. 27) that 
such singular quadrat ic  forms can always be written as regular (non- 
singular) ones over fewer integral variables. After changing into these new 
variables, the summat ions  in (23) over the / missing variables can be per- 
formed, yielding a factor N t/2, where 1 is the degeneracy of the zero eigen- 
value of M, and the remaining summat ions  can therefore be evaluated 
using the Gaussian summat ion  formula. 

This procedure can be illustrated in a special case as follows. When 
D = 0 we know that the rows of the matrix M are not all linearly independent. 
This means that  there exist real numbers  c;, i = 2, 3 ..... S -  1, such that 

S - I  

M I j =  -- E ciMo, j =  1, 2 ..... S -  1 (35) 
i = 2  

Since M is symmetric,  we have also 

S - - I  

M i l  = -- E M(/cj, i =  1, 2 ..... S -  1 (36) 
j = 2  

and, after substituting (36) into (35) and setting j =  1, 

S - - I  

M11 = ~ ciMo.c j (37) 
i , j = 2  
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It follows that we have 

S - I  

n . ( M n ) =  ~ niMo.n j 
i , j =  1 

S - - I  S - - I  S - - I  

= n l M H n l +  ~ nlMUnj+ ~ niMunj+ ~ n~Mo.nj 
j = 2  i=2  L j = 2  

S--I  

= ~ (cinl--ni) Mij(cjnl--nj) (38) 
i , j=2  

where we have used (35)-(37) in reaching the last step in (38). 
Provided that all the c~ are integers, the expression (38) is now a 

quadratic form over S - 2  integral variables, effectively crossing out the 
first row and first column of the matrix M. If this reduced quadratic form 
is again singular, one repeats the process (again assuming integral c~) until 
the resulting quadratic form is regular. The expression (23) can then be 
evaluated by applying the Gaussian summation identity. 

A P P E N D I X  A. THE  GENERALIZED G A U S S I A N  S U M M A T I O N  

In 1808 Gauss (zS) obtained a remarkable summation identity, now 
known as the Gaussian summation formula, which reads 

1 N~_~ 1 " " e i n / 4  inN~2 
e (2,~'/m'" = (1 + e-  ) (AI) 

The Gaussian summation identity (A1) can be generalized in a number of 
ways. It5"29'3~ A simple generalization is the identity 

1 N--I M--I  
~.. ~ e,~iM,,2/N+2,,i,o, = I e,,~/4 ~ e_niNOn+ ,?/M (A2) 

t l=0 ~ m=0 x/N 

valid for integral M, N, and N(2y + M ) =  an even integer, which recovers 
(AI) upon taking M = 2  and y = 0 .  A multidimensional summation 
generalization which we use in arriving at (25) is the following. 

Let M be a nonsingular p x p symmetric matrix with integer entries 
(positive or negative). We denote by n = ( n l  ..... np), where the ni are 
integers, a vector in Z p, and by Mn the vector with components 
Z~= ~ M~nj. The collection of vectors {Mn : n ~ Z p } forms a p-dimensional 
sublattice of Z p. Let A be a fundamental domain (unit cell) of this 
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sublattice. Similarly we define x = (x~ ..... xp) where the x~ are real, a vector 
in the p-dimensional space R p. For  all x, y ~ R p, define 

, ] u(x, y ) = ~ / - s e x p  ~ x .  ( M x ) + 2 7 t i x - y  

1 
v(x ) = ~ exp [ - ~iNx.  (M - Ix ) -] 

,/D 

(A3) 

where D = Idet M[. Let q(M) denote the signature of M, which is the num- 
ber of positive eigenvalues minus the number  of negative eigenvalues of M. 
Also let CN be the set of N p discrete points CN= {n~ZP:O<~n~<~N - 1, 
i = 1  ..... p}. 

For  y ~ R p satisfying the condition 

N(2y~ + M , )  = even integer, i = 1 ..... p (A4) 

we have the generalized Gaussian summation formula 

~. u (n ,y )=e  i~"lM)/4 ~ v ( m + y )  (AS) 
n ~ C  N mEA 

For  p = 1, (A5) reduces to (A2). 

APPENDIX  B. TABLE OF I N V A R I A N T S  FOR LINKS W I T H  EIGHT 
OR FEWER CROSSINGS 

The invariant for a link K is generally given by the expression 

_ ( N,/2 ] 2 o , . -  ~ IK(N) -- \ ~ - ~ 1 /  eikn/4 ,,Z=O e ( n )  e -i'nN/D2 (B1) 

where l is the degeneracy of the zero eigenvalue of M, which is equal to 
zero unless D = 0 as in 8310 and 834. The following table gives the values of 
[k, D~, D2] {c(n), } with nonzero c(n) listed. For  example, the invariant for 
the link 7~ is 

1 
[2, 7, 7 ] {lo, 22, 24, 28 } ~ ~ e'2"/4(I + 2e-;2.u/7 + 2e-,4.u/7 + 2e-fs.u/7) 

x/V 
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The table also lists D=ldetMI and w ( K ) = n + - n  , the number of + 
crossings minus the number of - crossings, to specify the direction of line 
orientations. Generally, D=Z,z,~2o ' c(n) (/=0), D, and D2 are factors 
of D, and, in a few cases, Dz=2D. 

K O w(K) IK(N ) 

3, 3 +3 
4, 5 0 
5, 5 +5 
52 7 +5 
6, 9 +2 
62 11 +2 
63 13 0 
2~ 2 + 2  
4~ 4 --4 

+4 
5~ 8 +1 
6~ 6 - 6  

+6 
6_~ 10 +6 
63 1 2 - 6  

+2 
6~ 1 2 - 6  

+2 
63 16 0 
6] 4 - 2  

+6 
7, 7 +7 
7 2 11 +7 
73 13 +7 
74 15 +7 
75 17 +7 
76 19 +3 
77 21 +1 
7~ 14 --3 

+1 
7~ 18 --3 

+1 
7~ 16 +3 
74 16 +3 
7~ 20 --7 

+1 

[--2, 3,3]{lo,24} 
[0, 5, 5 ] { lo ,  2.,, 2,,} 
[4, 5, 5]{10 , 24, 26} 
[ - 2 ,  7, 7]{ lo, 26, 2,o, 2,2} 
[0, 9, 93{30, 24, 2,0, 2,6} 
[ - 2 ,  11, 11]{1 o, 24, 2,2,214, 2,6,220} 
[0, 13, 13]{lo, 22, 26, 28, 2,'8,220,224} 
[1, 2, 2]{lo, 1,} 
[3,4,4]{lo, 23, 14} 
[ -1 ,4 ,4 ]{ lo ,  14,27} 
[ -1 ,2 ,8 ]{ lo ,  13, 1,t, 1,2} 
[ - 3 ,  6, 6]{ lo, 25, 2'8, 19} 
[ - 1 ,  6, 6]{lo, 13,2'8,2,,} 
[ - 3 ,  10, 10]{lo, 15, 28, 2,2, 2,3, 2,7} 
[3, 12, 123{1 o, 24, 47, 1,2 , 2t5,216 } 
[ - 1 ,  12, 12]{lo,23,24, 1,2,216, 4,9} 
[2, 12, 123{lo, 64, 3,2,216 } 
[ - 2 ,  12, 12]{3o, 24, 1,2, 6,6 } 
[0, 4,4]{2o, 32, 36} 
[0, 4, 4]{30, 14} 
[4,4,4]{lo, 34} 
[2, 7, 73{lo, 22, 24, 2'8} 
E-Z, 11, 11]{lo, 24,2,2,2,4,2,6,22o} 
[4, 13, 13]{lo, 24, 2,o, 2t2, 2,4, 2,6,222} 
[--2, 15, 15]{lo, 26, 4,4, 220, 224,426 } 
[4, 17, 17]{lo, 26, 2,0, 2,2, 2t4, 220, 222,224, 22'8} 
[ - 2 ,  19, 19]{lo, 24, 26, 2,6, 22o, 224,226, 22'8, 23o, 236} 
[0, 21,213{lo, 26, 41o, 212,224, 22' 8, 434,440 } 
[3, 14, 14]{1 o, 24, 17, 2'8, 2,,, 2,5, 2,6,223} 
El, 14, 14]{1o, 2,, 24, 2'8, 29,216, 12,, 225} 
[1, 18, 18]{3o, 25, 2'8, 39, 2~7,220,229, 2321' 
[0, 18, 36]{2,, 27, 39,225, 23,, 249,255,363} 
[ -1 ,4 ,  16]{lo, 17, 1,5, 1~6, 123, 22'8, 13,} 
[ - 3 ,  4, 16]{10 , 15, 1,3, 1,6,220, 12,, 129} 
[3, 20, 203{lo, 47, 28, 2,2, 2,5, 12o, 423, 22'8,232} 
[ - 1 ,  20, 203{lo, 43, 2'8, 2,2, 12o, 427, 22'8,232,235} 
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K D w(K) IK(N) 

76 24 
7~ 4 

72 8 
7~ 20 
8, 13 
8= 17 
83 17 
84 19 
85 21 
86 23 

87 23 

88 25 
89 25 
81o 27 

811 27 

8,= 29 

8,3 29 

814 31 

8,5 33 

816 35 

817 37 

818 45 
8,9 3 
820 9 
821 15 
8~ 8 
8~ 16 

+1 [--1,6,243{1 o,13,2,,,112,127,232,235,244 } 
--1 [--1,4,4]{lo,  14,27 } 
+7 [--3,4,4]{12,25, 16} 
+3 [ - 1 , 2 , 8 ] { l o ,  17,1,2,1,5 } 
+1 [0,20,5]{30,62,23, 15,27,68} 
+4 [0, 13, 13]{lo, 22,26,28,218,22o, 224 } 
+4 [4, 17, 17]{ lo, 26, 21o, 212, 2,4, 22o, 222,224,228} 

0 [0, 17, 17]{lo, 22, 24, 28,216,218,226, 23o, 232} 
0 [2, 19, 19]{10 , 22, 28, 2,0, 2,2,214, 2,8,222,232,234} 

+4 [4, 21,213{1 o, 26,212, 2,4,420,224,426,438} 
+4 [ - 2 ,  23, 23]{lo, 2,0,214, 22o, 222,228, 23o, 234,238, 

24o, 242,244 } 
+2 [ - 2 ,  23, 23]{lo, 21o, 214, 22o, 222,228, 23o, 234,238, 

24o, 242,244 } 
+2 [2, 25, 50]{213,217, 525,233,237,253,257,273,277,293,297 } 

0 [0, 25, 25]{50, 22, 28,212, 2,8,222,228,232,238,242,248} 
+2 [ - 2 ,  27, 27]{30, 24, 21o, 216,222,228,234,636, 

240, 246,232 } 
+4 [ - 2 ,  27, 27]{3o, 24, 2m, 216,222,228,234,636, 

240, 246,252} 
0 [0, 29, 29]{1 o, 22, 28, 2,0, 2,2,214, 2t8,226,232,240,244, 

246,248,250,256} 
+2 [0, 29, 29]{lo, 22, 28, 21o, 212,214,218,226,232,240,244, 

246, 248, 250, 256 } 
+4 [ -2 ,  31, 31]{lo, 26, 212, 22, 224 , 226 , 230, 234, 242, 244, 

246, 248, 252, 254,258,260} 
+8 [4, 33, 33]{lo, 26 , 41o, 218, 2",2,224,428,230,440, 

446,452,254} 
+2 [--2, 35, 35]{lo, 44, 2,4,416,230,436,444,446,250, 

256, 260,464} 
0 [0, 37, 37]{lo, 22, 26, 28,214,218, 220, 222, 2"-'4,232, 

242,250,252,254,256, 260,266,268,272} 
0 [0, 45, 15]{10 , 82, 88, 4,0,212, 2,8,420, 8:,2,828} 

+8 [2,3,3]{lo, 22} 
+2 [0, 9, 9]{30, 22, 28,214} 
+4 [ - 2 ,  15, 15]{lo, 21o,2,2,218,4-,2,428 } 
+8 [1,2,8]{lo, 11,14,19} 
+8 [3,4, 16]{lo, 13, 11,,2,=, 116,119,127} 

822/78/5-6-6 
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K D w(K) 1K(N) 

8] 22 --4 

+8 

8] 24 - 4  
+8 

8~ 26 +4 

20 o 
+8 

8~ 30 0 

+4 

88 34 +2 

892 28 - 4  
0 

8~o 32 o 

8~1 28 0 

+8 

8~2 32 +2 

8~3 40 +2 

8~4 36 0 
+8 

8~5 8 o 
8126 12 - 4  

+4 
8; 20 - 8  

0 
+4 

[1, 22, 22]{lo, 21,24, 
133,236, 237} 
[3, 22, 22]{lo, 23, 24 , 
223, 227, 231,236} 
[1, 6, 24]{10 , 13 , 
[3, 6, 24]{lo, 27, 
[ - 3 ,  26, 26]{lo, 
237,241,244,245 } 
171, 20, 20]{lo, 41 
[ - 3 ,  20, 203{lo, 
[ , - l ,  30, 30]{lo, 
251,456,459} 
17-3, 30, 30]{lo, 
444, 145,456} 

25, 29,212,216,220,225, 

111,212,215,216,220, 

24,216,219, 127, 139,243} 
112, 115,216, 228, 231, 139} 
25, 28, 113, 220, 221,224,228,232,233, 

, 24, 49,216, 120, 224, 225, 226} 
24, 25,216, 120,421,224,429,236} 
411, 115,220,224,235,236,239,444, 

25, 29, 22o, 221,224,429,236, 44,, 

[ - 1 ,  34, 34] { lo, 24, 28,215,216,219,232,235,236, 
243, 247, 151,252, 255,259,260,264,267} 
[1, 28, 283{lo, 41,24, 28, 49,216,428, 128,232,236,244,249} 
I---l, 28, 28]{22,411,114,218,222, 23o, 235,142,443, 
246, 25o, 451 } 
[ - 1 ,  8, 32]{20, 13,111,212,119,127,135,143,244, 
248, 151, 159} 
[--1, 28, 28]{1 o, 24, 28,411,216, 128,232,235,236, 
443,244,451 } 
[3, 28, 28]{lo, 24, 27, 28,415,216,423, 128,232, 
236, 439, 244} 
[,1, 8, 32]{20, 13, 111,212, 119, 127, 135, 143, 244, 
248, 151, 159} 
17-1, 10, 40]{1 o, 211,216,219 , 135,244 , 251,259, 
16o, 264, 175,276} 
[1, 36, 12]{lo, 44, 87, 48,112,215,416,420, 823} 
[--3, 36, 12]{lo, 23, 44, 48, 811, 1,2,416,819,420 } 
[,-1, 2, 8]{lo, 17,112, 1,5} 
[1, 12, 12]{lo, 41,24, 29,112,216} 
[ - 1 ,  12, 12]{23, 16,21o, 118,419,222} 
[2,20, 10]{lo, 22, 43, 47, 28, 11o, 212,215,2,8 } 
[ -2 ,20 ,  10]{lo, 22,25,28, 11o,212,413,417,218} 
[4, 20, 10]{2 o, 23, 15, 27, 48, 41,, 2,3, 115,217} 
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K D w(K) IK(N) 

8~ 28 

8] 28 

83 32 

8~ 32 

83 36 

8~ 4 

883 12 

83 16 

8~o o 

8'~ 32 

84 16 

8 4 o 

--8 [4, 28, 14]{lo, 45, 26, 21o, 212,413, 1,4,417,220, 
221, 224,226} 

0 [0, 28, 14]{lo, 43, 26, 27, 2,0 , 2,2 , 114 , 419 , 220 
224, 226, 427} 

+2 [ - 1 ,  28, 28]{25, 27,213,217, 12,, 431, 233,241, 
245,447, 149,455} 

--4 [2, 28, 7]{10 , 63, 65, 26, 37, 2,0, 2,2, 6,3} 
+4 [ - 2 ,  28, 7]{30, 23, 25, 66, 17, 6,0, 6,2,213} 
+ 6  [ - - 3 ,  28, 28]{25 ,  2,3 , 617 , 121 , 633 , 641 , 245 , 349 } 

0 [0,8,8]{lo, 22,23, 14,25, 18,2,,, 1,2,2,3,214} 
+8 [4,8,8]{lo, 23 , 14,25,26 ,18,2,o, 2 n,1,2,2,3} 
- 1  [2,8, 16]{lo, 21,24, 18,29,212, 1,6,2,7,124,225} 
+2 [0, 8, 163{lo, 2,, 24, 18, 29, 1,6 , 2,7,124,225, 2..,s } 
+4 [ - 1 ,  8,16]{2o, 14, 25,1t2, 2,3,12o, 22,, 224,128, 229} 
- 4  [2, 36, 6]{50, 22,103, 24, 56, 47, 28, 2,o,4,t} 

0 [0, 36, 6] {10o, 21, 53, 44, 25, 27, 48, 59, 2n} 
+4 [ - 2 ,  36, 18]{5o, 43, 26, 2,2, 4,5, 5,8,224, 1027, 230} 
- 4  [0,4,2]{20, 1~, 13} 

0 [ - 2 , 4 , 2 ] { l o ,  12,23} 
+8 [2, 4, 2]{10 , 2,, 12} 
- 4  [2, 12,6]{2o, 21, 13,44,27, 19} 

0 [0, 12,6]{lo,4,,24, 16,29,2~o} 
+8 [4, 12, 6]{lo, 23, 24, 16, 47, 2,0} 
- 4  [2,4,4]{lo,  2,,22, 14,25} 

0 [0, 4, 4]{20, 12, 23, 16, 27} 
+4 [ - 2 , 4 , 4 ] { l o ,  2 ,,14,25,26} 
- 4  [3, 4, 4]{12, 23, 16}, l-- 1 

0 [1,4,4]{lo,2, ,14 }, /=1 
+4 [ - 3 ,  4, 4]{lo, 14, 25}, 1=1 
- 8  [3, 8, 8]{lo, 43, 34, 38, 4,1,112} 
- 4  [1,8,8]{3o, 34,47, 18, 1,2,415} 

0 [ -1 ,8 ,8]{3o,43,  14, 18,411,31,,} 
--4 [1, 4, 4]{2o, 3,, 24,15} 
- 4  [ -1 ,4 ,4]{22,  13,26,37} 
+4 [ -3 ,4 ,4 ]{20  ,1,,24,35} 

0 [0,4,1]{3o, 1, }, l=1  
+8 [4, 4, 1]{lo, 3,}, /=1 
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