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The Chiral Potts Model and
Its Associated Link Invariant
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A new link invariant is derived using the exactly solvable chiral Potts model and
a generalized Gaussian summation identity. Starting from a general formulation
of link invariants using edge-interaction spin models, we establish the unique-
ness of the invariant for self-dual models. We next apply the formulation to the
self-dual chiral Potts model, and obtain a link invariant in the form of a lattice
sum defined by a matrix associated with the link diagram. A generalized
Gaussian summation identity is then used to carry out this lattice sum, enabling
us to cast the invariant into a tractable form. The resulting expression for the
link invariant is characterized by roots of unity and does not appear to belong
to the usual quantum group family of invariants. A table of invariants for links
with up to eight crossings is given.

KEY WORDS: Link invariants; chiral Potts model; generalized Gaussian
summation identity.

1. INTRODUCTION

Knots and links are embeddings of circles in R* described by their projec-
tions onto a plane. As projections change their configurations when the
embedded circles are deformed in R, it is pertinent to ask what is being
preserved in the process of deformation. Obviously, what is being preserved
is intrinsic to the topology of the link, and this leads to the consideration
of link invariants.

Link invariants are algebraic quantities associated with planar projec-
tions, which remain unchanged when the links are deformed. An exciting
recent development in the theory of knots is the realization that link
invariants can be obtained from exactly solvable models in statistical
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mechanics (for reviews of this development see refs. 1-3). Indeed, using
solvable models in two dimensions, it has been possible to generate all
known link invariants of the quantum group family, including the Jones¥
and the Homfly® polynomials. More recent developments on spin models
and link invariants can be found in refs. 6-11.

In a recent letter'’?) we reported a new link invariant derived from the
solvable chiral Potts model'*'¥ and evaluated using a generalized
Gaussian summation identity."'* The new invariant, which was earlier
defined by Kobayashi et al."'® without explicit evaluations, is in the form
of a polynomial of roots of unity. In view of its novelty and the intimate
relation with the Gaussian summation identity, it seems useful to provide
details of our analysis. This is the purpose of the present paper. In addition,
we also present a general duality consideration, a discussion of some
properties and relations of our invariant to other known polynomial
invariants, and a table of the invariant for links with eight or fewer
crossings.

This paper is organized in the following manner. In Section 2 we recall
the formulation of link invariants using edge-interaction models, paying
particular attention to models with chiral interactions. In Section 3 we
present the formulation of a duality relation for general edge-interaction
spin models and show that it leaves unchanged the invariant derived from
self-dual models. In Section 4 we recall the solvable chiral Potts model,
and a certain infinite-rapidity limit of its vertex weights is introduced in
Section 5. Section 6 deals with the detailed evaluation of invariants. We
derive the Skein relation satisfied by the invariant and discuss relations
with other known invariants in Section 7. Several technical points and some
properties of the invariant are discussed in Section 8. In particular, we
establish the identity of the invariant with its mutant, a result we extend to
any invariant derivable from edge-interaction spin model. In Appendix A
we describe the summation identities known as the Gaussian summation
formula. A table of invariants for all links with up to eight crossings is
given in Appendix B.

2. LINK INVARIANTS FROM EDGE-INTERACTION MODELS

Link invariants can be generated from solvable two-dimensional
models in statistical mechanics.!!"® Here, we briefly review the formulation
involving edge-interaction models.

Starting from a link K which we assume to be oriented, one constructs
a directed lattice ¥ by regarding lines of the link as lattice edges and line
crossings as lattice vertices. This leads naturally to two types of vertices, +
and —, corresponding to the two kinds of line crossings + and — in the
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T, (a=b)

Fig. 1. The + and — line intersections associated with two kinds of shadings that can occur
at a vertex and the vertex weights.

link as shown in Fig. 1. Now the lines divide faces of % into two subsets,
with one subset neighboring only faces of the other subset, and vice versa.
This permits us to introduce a spin model with spins residing in one subset
of the faces and interactions extending across the line intersections. The
spins and the interactions form a line graph G. To help one to visualize, it
is customary to shade the faces in which the spins reside.""”’ Then, the line
graphs for the two different shadings are mutually dual. The example of the
two different face shadings for the link 8%, is shown in Fig. 2. Note that
there exist four distinct types of line crossings and, consequently, four types
of spin interactions. These four different configurations, shown in Fig. 1,
possess weights

us(a—b),  ayla—b) (1)

where a,b=1,2,., N are the spin states of the two interacting spins.
Here, we have assumed quite generally that the interactions can be chiral,
namely, u, (a) can be different from v, (—a). The example of the two line
graphs for the link 82 is shown in Fig. 2 with the type of interactions
explicitly noted.

Let Z(u,, i1, ) be the partition function of the spin model for a given
face shading. Then, the formulation of link invariants using spin models**’
dictates that Z(u,,u,) is a link invariant, provided that the Boltzmann
weights satisfy certain conditions imposed by Reidemeister moves.!'®
Reidemeister moves are elementary moves of lines in the knot projection
when links are deformed in R®. The possible Reidemeister moves that can
occur are those shown in Fig. 3, where for each line movement we must
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Fig. 2. The two different kinds of face shadings and the associated line graphs for the link
835, where the interaction types are explicitly noted.

allow the two possible kinds of face shadings. The desired Reidemeister
conditions can be read off from the figure, leading to

7,.(0)=1 (2a)
1 N-—1
—= Ha—=b)=1 2b
ﬁbgou_(a ) (2b)
u,(a=b)u_{(a—b)=1 (2¢)
1N—l
— i {a=b)u_(b—c)=9, 2d
Nb};:ou a—b)i_(b—c) (2d)
u,(a=b)u_(b—a)=1 (2¢)
1N—l
— da=byu_(c—b)=6, 2f
N L usla=blu(c=b) (21)

L i u_(a—dya_(b—d)ia, (d—c)=da_(b—c)u_(a—c)u,(a—b)

\/Nd=0

(2g)
Provided that conditions (2a)-(2g) are met, the quantity
Ix(N)Y=N=S=227(y, q,) (3)

where S is the number of spins (shaded faces) in % and ¢, is the number
of connected components of the line graph associated with the other (dual)
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Fig. 3. Reidemeister moves for oriented knots with two different kinds of face shadings.

choice of face shading, is an invariant for the link K.**'*’ Note that ¢, =1
for connected . Note also that the normalization of (3) has been taken
to be Iunknot(N)= 1

3. DUALITY RELATION FOR SPIN MODELS

In this section we present the formulation of a general duality relation
for two-dimensional edge-interaction spin models in a form suitable for our
consideration.

Consider an N-state spin model on a line graph G with S sites. The
spins interact with a generally chiral interaction u,(a — b) along the lattice
edge {i,j} connecting sites / and j in respective spin states a and b.
Consider the dual model whose spins are on the dual graph G, with S,
sites and with interactions

1 N
u'P(n)=—— 2 ""u(m) (4)
\/]T/m=l
whose inverse is
1 N
u(n)=7v Y o ™uP)(m) (5)

1

where @ = ¥V,

$22/78/5-6-5
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Let ¢ and ¢, be the respective numbers of connected components of G
and G,. (For connected lattices we have c¢=cp=1) Let Z({ux}) and
Z®[{u'®}] be the respective partition functions of the spin models on G
and G”. Then, following Wu and Wang,"'® one establishes the identity

Z({u}) =N Z O N ut}] (6)

where the partition function on the right-hand side of (6) is defined with
interactions /N u'?) in place of #‘®. Using the Euler relation generalized
to disjoint graphs

S+Sp=c+cp+E {(7)

where E is the number of edges (which is the same for G and Gp), one
obtains

N(CD—S—Z)/ZZ({u}) =N(C—SD—2)/ZZ(D){{u(D)}] (8)

This is the desired duality relation.

For chiral interactions for which lattice edges are directed, the orienta-
tion of a lattice edge on G, is that of the corresponding lattice edge on G
rotated 90°.¢®) Furthermore, the shading of the other set of faces, namely,
choosing spins to reside in the other set of faces, corresponds to the inter-
change of u, <> i1, (cf. Fig. 1). Therefore, a & interaction on G corresponds
in the dual space to a u‘f ) interaction, and a wu interaction on G
corresponds on G, to a i#'?’. This leads to the duality relation

N(CD—S—Z)/ZZ(ui’ ﬁi)zN(C—Su—l)ﬂz(D)[a(iD)’ u(f)] (9)

It follows that for self-dual models satisfying a'?'=u., u D' =4a,, the
invariant {3) evaluated using either scheme of face shading is identically the
same. This conclusion applies to both the chiral and nonchiral self-dual
models.

4. THE CHIRAL POTTS MODEL

The N-state chiral Potts model is a spin model whose Boltzmann
weights W(n) and W(n) are chiral and N-periodic. Namely, quite generally
we have W(—n)#W(n) and W(—n)#W(n) and the equalities
W(n)= W(n+ N) and W(n)= W(n+ N). An important recent advance in
two-dimensional lattice statistics has been the discovery of an exact
integrable manifold of the chiral Potts model.!'>'% In the notation of
ref. 14, the integrable vertex weights are best described by introducing
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Fig. 4. Auxiliary lines defining rapidities for the chiral Potts model and the vertex weights.

rapidities a,, b,, c,, d, to auxiliary lines drawn as shown in Fig. 4. The
rapidities satisfy the N-periodicity condition

N+bN
% X0 A;,  independentof p (10)

N N
ET

Then the weights can be written, for 0<n< N —1, as

(n) [~
&) =1y (0)_Hbd—cawf )
(n)

The weights (11) satisfy the relations

gpp(n)= 13 g,;p(”)=5no (lza)
£,,(0)=g,,0)=1 (12b)
g,,q(a—b)gqp(a—b)= 1 (12c)
and the Yang-Baxter equation
N—-1 _ _
Y W,(a—d) W, (b—d)W,(d—c)
d=0
=R, W,,,(b—c) W, (a—c) W, (a—b) (12d)
where
qur =qufqr/fpr
N-1 N km 13/ 1I/N (13)
f =[H Zk:lw qu(k):|
r m=0 WP‘i(m)
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For

c,=d =1
. ; ? (14)
a,,+b,,=1=const

the model is self-dual®® and f,,, is independent of p and g.

5. THE INFINITE-RAPIDITY LIMIT

To generate link invariants we need first to identify the weights u,
and &, appearing in (2a)}-(2g). Comparing (2) with (12}, one observes that
an obvious choice is {u,, u_, i, 4_} ~ {8, 84p> &pg» 84p}- This leads us
to introduce the infinite-rapidity limits

u (ny=A4, blim €pe(1), u_(ny=A_ blim &pq(1)

" L (15)
u,(ny=B, blim £pq(N), u_(n)=B_ blim &py(n)

p = W g — o

where 4, and B, are constants to be determined. It turns out that condi-
tions (2a)-(2g) can be satisfied for the self-dual model (14) with 7=0. This
leads us to write

a,=w'"17b, (16)

P
where / is an integer, and

up(n)y=A (—1)y @@+ -
ity (n)=B ., (—1)" @"F"

While (17) is defined for 0<n<N—1, it follows from the N-periodic
property that it holds for alln (positive or negative). Note that these
weights are chiral for /#0.

From (2a) and using the Gaussian summation identity (A2) with
M =1 in Appendix A to evaluate (2b), one obtains

A, =(—1) @xl7? etmN-1yd

B,=1

(18)

It can then be verified that conditions (2¢)—(2g) are now all satisfied by
(17) and (18). It can also be verified from (4) that we have

uP(n) =i, (—n)
* * (19)
#2(n) = u (n)
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Fig. 5. Example of a shaded polygon showing one source and one sink of arrows around its
perimeter.

Thus, as discussed at the end of Section 3, the invariant I,(N) is inde-
pendent of the face shading chosen. This is the desired result.

The invariant /,(N) is also independent of / in (16). To see this, we
observe from the second line of (17), which now holds for all n, that the
ii,(a—b) interaction between spin states ¢ and b contributes to the
summand of the partition function an /-dependent factor w™w ~*. The two
factors in this product can be split and associated separately to the two
corners of the two shaded polygons meeting at the line crossing (cf. the
second row of Fig. 1). Next we collect these factors for each polygon.
Let the spin state of a shaded polygon be a. Then, to each corner of the
polygon with two outgoing (incoming) arrows [source (sink) of arrows]
we have a factor w ™" (w™). As demonstrated in the example shown in
Fig. 5, there is always an equal number of sources and sinks around a
polygon. Thus, the /-dependent factors around each polygon cancel out
and, as a result, the link invariant /,(N} does not change its value if we
set /=0 in #,. As discussed in Section 7 below, every link has a special
projection in which all crossings are of the type @, . It follows that I, (N)
is independent of /. For self-dual models the dual of the », weights are the
i, weights. Therefore, it also follows that we can set /=0 in «, (when
evaluated in the dual space), and hence deduce directly that I (N) is
independent of /.

Finally, combining (17) with (18) and /=0, we arrive at the expres-
sions

ui(n)=(_l)" L’ti(N_ 1)n/4 winl/z

20
ﬁi(n)=(_l)nw$nz/2 ( )

which are nonchiral. The substitution of (20) into (3) leads to the desired
link invariants. It is interesting to observe that the chirality of the weights
(17) 1s irrelevant in the resulting invariants.

6. EVALUATION OF KNOT INVARIANTS

The link invariant I (N) for a link K is evaluated by substituting (20)
into (3). Noting that the essential difference between the weights # and & in
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Fig. 6. Signed graphs correspond to the two possible face shadings of the link 8% shown
in Fig. 2.

(20) is the sign of the factor n?/2 in the exponent, it is useful to note
explicitly this sign, + or —, on the line graph, and this leads us to consider
the signed graph associated with a face shading. Specifically, to each edge /
in a line graph G, we assign a number g,= + 1 according to the following
rules: if the associated line crossing is of type &, or u_, assign ¢;= +1; if
the crossing is of type #_ or u,, assign ¢,= — 1. The example of the two
signed graphs associated with the line graphs for the link 8%, of Fig. 1 is
shown in Fig. 6. Note that this sign is determined by the face shading only,
independent of the orientation of lines in .. Thus, our choice of the sign
agrees with that of Fig. 48 of ref. 3.

To facilitate bookkeeping, we now introduce an Sx S (incidence)
matrix Q with elements

Qij= Z &) i#j
I1=<ij> (21)
Qi=— Z Qu
k(#i)

where the summation in the first line is over all edges / connecting the ith
and jth sites. The matrix Q is obviously symmetric; it also has the property
that the sum of each row or column vanishes. Matrices possessing these
properties are singular, all cofactors are equal, and the cofactors generate
spanning trees of the graph G.*"

Let n=(n,,.., ng) be an integer-valued vector whose components
n,=0,1,..,N—1,i=1,.., S, denote the state of the ith spin on G. Further
introduce a vector z with components z,=Q;/2, i=1, .., S. Then the link
invariant (3), after the substitution with (20), assumes the form

I(N)=N'eo=S-202 |:exp ”i(N—41) C(K):'

N—-1

x ) exp[i—;n-(Qn)+2nin-zi| (22)

ny..,ns=0
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where {(K) is the number of u, weights minus the number of u_ weights
in K.

Due to the N-periodicity of Boltzmann weights, there is no loss of
generality to fix one of the S spins, say, the Sth, in the spin state ng=0.
Then the summation over ng in (21) gives rise to a factor N and one
obtains

I¢(N)=Nto=sn [cxp EUV_—;)C_(K)]

N-1

x Y exp [?—Vin-(Mn)+2nin-y:| (23)

np,.ans— =0

where n and y are (S — 1)-dimensional vectors, M is the (S—1)x(S—1)
cofactor matrix of Q obtained by deleting the Sth row and column, and
the summation is (S — 1)-fold. Note that we have always

N(2y;+ M,;)=2NM ;= an even integer (24)

The expression (23) subject to (24) can be evaluated using a
generalized Gaussian summation formula given in Appendix A. Provided
that the matrix M is nonsingular, using (AS) we find

mi(N—1){(K) __ min(M)
p 2 exp —, ]

I (N)=N'o=1r2 [ex

x% ) exp {—niN(n+y) . [M“(n+y)]} (25)
ned
where n=(n,,..,n5_1), Y=(V1, s Vs_1), y,i=M;/2, D=|det M|, 4 is the
fundamental domain (unit cell) of the lattice formed by the collection of
vectors Mn, and n(M) is the signature of M, namely, the number of
positive eigenvalues minus the number of negative eigenvalues. Note that N
now appears as a parameter, instead of a summation limit, in (25). The
expression (25) completes the evaluation of I (N).

It is instructive to illustrate the evaluation of (25) for the link 8%
shown in Fig. 1. The two signed graphs corresponding to the two different
face shadings are shown in Fig. 6, from which one obtains the matrices

-2-1 1 0 0

-1 2 0-1 0 1 2 =2
M= 1 0-2 1 0], 2 0 -2 (26)
6-1 1-1 1 -2 -2 5

0 0 0 1 -2
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for the two shadings, respectively. In the first case one finds further
UK)= =2, n(M)= -3, D=8, 4=(-2,1,0,0, —1), (—1,0, —1,1, —1),
(-1,0,0,0,0), (—1,1,0,0,-1), (—-1,1,-1,0,0), (0,0, —1,1, —1),
(0,0,0,0,0), and (0,1, —1,0,0). In the second case M is a 3 x 3 matrix.
One finds ((K)=2, y(M)= -3, D=8, 4=(-2,—-1,2), (-1, —-1,1),
(—1,0,0), (-1,0, 1), (0,0, —1), (0,0,0), (0,1, —2), and (1,1, —3). In
either case, (25) yields the invariant

IK(N)z%e—inM (l _|_e—77!iN/8 +e—3rziN/2 +e—151|:iN/8)

We have used a computer program to compute invariants from (25).
Generally, for a given link K with a given orientation, the matrix M and
the number {(K) can be read off from the link diagram and are used as
inputs. The computer then searches for all sites in the fundamental
domain 4 and evaluates (25) term by term. We include in Appendix B a
table of invariants for all links with eight or fewer crossings. We note that
our invariant assumes the same form for some links. Examples are the
pairs {6,,7,}, {635,8,}, {7s5,8,}, {8 87}, {810,811}, {82,853}, and
{72, w(K)= —1; 4}, w(K) =4}

7. RELATIONS TO OTHER INVARIANTS AND SKEIN
RELATIONS

The matrix M occurring in (22) has been used in previous studies of
link invariants, in particular by Goeritz,*® and has come to be known as
the Goeritz matrix.®®® Traldi®® introduced an extension of M, which he
called the modified Goeritz matrix, and this was the starting point for
Kobayashi et al.,"'s' who built their invariant T,(K) from this matrix. As
alluded to in Section 1, T(K) turns out to be identical to I (N), although
in a different form and without an explicit evaluation. The Goeritz matrix
is also related to the Seifert matrix of the link. For completeness, we briefly
define relevant notions and describe some related results.

Consider an oriented link diagram with a shading, where the infinite
region is one of the shaded regions. Denote by a,, a,, .., &, these shaded
regions, where p=S—1 and «, is the infinite region. Denote by f,, ..., 8,
the regions in the dual shading. The diagram is a special projection if the
following conditions are satisfied:

(1) All B-regions have consistently oriented boundaries.

(ii) All B-regions are topological disks, without holes.
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It is not difficult to show that every link has a special projection.®
Since the link diagram is the projection of a link in space onto a plane, we
may consider the f-regions in a special projection as the projection onto
the plane of an oriented surface in space, whose boundary is the link. This
surface is the Seifert surface of the link. It follows that p=2g, where g is
the genus of the Seifert surface.

Suppose we have a special projection of a link. Place spins in the
(shaded) a-regions as described in Section 2 and define the Q matrix
associated with the projection as in Section 6. Omitting the infinite region
o, reduces Q to the matrix M. Since each a-region has an even number of
boundary components, the diagonal entries of M are always even. Further-
more, all crossings are now of type &, , so {(K)=0. Hence the invariant
I(N) given by (25) reduces to the simple form

L Y. exp(—miNn-M~'n) (27)

\/anzl

In this situation y(M) is itself a link invariant, and is called the signature
of the link. As noted in ref. 12, D= |4(—1)|, where 4(t) is the Alexander
polynomial. This fact can also be seen by considering a Seifert matrix as
follows.

Let a, be a simple closed curve on the Seifert surface which projects to
a simple closed curve which encloses the region «;, in the positive direction,
but does not enclose any other a-regions. Let a; be the “push-off,” or a
small displacement, of a; from the surface in the direction opposite to the
orientation of the surface. Then the Seifert matrix S is a p x p matrix whose
(4,/)th element is the linking number of a; and g; for all 1<, j<p.®
It is a straightforward calculation to show that M =S +S7, where S§” is
the transpose ofS. It is also known that the Alexander polynomial is
A(t)=det(S” —S) and that the signature of the link is that of the matrix
S +S7”. These results imply D = |det M| = |4(—1)}.

Since the matrix M in (23) can be expressed in terms of the Seifert
matrix, it is natural to ask whether I (N) contains different information
than the Alexander polynomial 4(¢) and the signature invariant, which are
also expressed in terms of the Seifert matrix. One example shows that the
answer is yes. Let K denote the mirror image of K. Then, it can be verified
that the four nomequivalent knots 6,, 6,, 94, and 9, share the same
Alexander polynomial and signature. However, the invariant I.(N) dis-
tinguishes among 6,, 6,, and 9, although not between 9, and 9,,. On
the other hand, the Alexander polynomial distinguishes the links {8,,, 8,5}
for which I.(N) is identical.

in(M
IK(N)=N(CD—I)/2|:exp7C"1( ):l

4
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Finally, the invariants I(N) satisfy a Skein relation.""® In particular,
I(2) and I,(3) are related to the Jones polynomial at special values. The
Jones polynomial ¥ (t) is determined by the Skein relation

V0=V 0= (V=) Va0 (28)

where the links K, , K_, and K, differ only at one crossing, as shown in
Fig. 7. For definiteness we choose the shading shown in Fig. 7. Then the
corresponding partition functions Z ., Z _, and Z, differ only by the factor
arising at this crossing, which is respectively u_ (n), u_(n), or 1, where
u 4 (n) is given in (20). It is easy to show that the following identities hold
for N=2,3:

N=2: u+(r:)+a_(n)=\/§, n=0,1

[, —nif6 ni/6 — _ (29)
N=3: e u, (n)y+e™u_(n)=1, n=0,12

These imply the same relations for Z,, Z_, and Z,. Comparing with the
Skein relation (28) for the Jones polynomial, we see that

I(2)=(—1)®* V(i)

| (30)
Ix(3)= (= 1)™0* Vle™™")

where ¢(K) is the number of components of the link K. The invariants (30)
can further be related to the Homfly polynomial Pg(t, z) by using the
identity (— 1)+ ' V(1) = Pr(~1, S 1 = 1//1).

As discussed in ref. 12, the invariants for higher values of N also satisfy
certain Skein relations, but with higher-order crossings. For example, the
invariant I, (4) satisfies

Ix, (8)—Ix (8)— il (4) = —il,(4) (31)

where 2+ represents a crossing with two consecutive twists of the type u
shown in Fig. 7. Generally, the invariant I, (N) satisfies a Skein relation
connecting Ix(N), Ix (N), Ix,(N)y Txpupy, (N), where [N/2]=Nj2 for

z K
Y
& / y/
Fig. 7. Line configurations that can occur at a line crossing for writing down the Skein
relation.

QNN

%
4



Chiral Potts Model 1267

N=even and [N/2]=(N—1)/2 for N=odd, and n+ is a crossing of n
consecutive twists of the type v . The Skein relation is obtained by writing
out the identity

(N/2]
u_(n) [] [us(n)—u,(p)]=0, n=01,.,N—1 (32)
=0

p=

and making use of (2c). These relations, which are reminiscent of the Skein
relations satisfled by the Akutsu-Wadati polynomials,”>® are not very
useful for evaluating the invariant.

8. DISCUSSIONS

8.1. Mirror Image and Orientation Reversals

The invariant for the mirror image of a link is obtained by taking the
complex conjugation. This follows from the fact that, in a mirror image,
one interchanges u, «— u_, #, <> i_, and hence M < —M, and by inspec-
tion of (20) and (23) one finds that these changes induce only a complex
conjugation. Also, since M is independent of line orientations, from (23) we
sec that the reversal of the orientation of individual components in a link
introduces only an overall factor eV ~—V7"44 where A is the induced
change of {(K).

8.2. Invariants for Split Links

In standard notation, a link X is split if it can be deformed so that a
hyperplane in R? separates the link into two disjoint nonempty pieces, K,
and K,, say. By choosing the shading that leaves the infinite region
unshaded as shown in Fig. 8, we see from a consideration of (3) that

I(NY=/N I (N} Ii(N) (33)

where the factor of \/]T/ comes from the changes of c¢,. It follows that
I«(N) has a factor N*"~ V2 where m is the number of disjoint pieces con-
tained in the split link K.

. ]

K; K2 Ki#K2

Fig. 8. Consideration of split and connected links.
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8.3. Invariants for Connected Links

The connected sum of two links K, and X,, the link K, #K,, is
obtained by cutting open both links and joining them as shown in Fig. 8.
Denote by K the disjoint union of links K, and K, before they are con-
nected. By considering (3) with the infinite region shaded and using (33),
one finds

I io(N) =N "I (N) =T (N) I,(N) (34)

Therefore, like the Jones and Homfly polynomials, 7,(N) factorizes over
connected sums of links.

8.4. Mutant Links

We next review the notion of mutant links®$’ and show that I.(N) is
unchanged under this operation. Suppose there is a simple closed curve in
the plane which cuts a link X at four points only. By deforming the projec-
tion, one can place the interior of the curve inside a box as shown in
Fig. 9a, with the orientations of the four incoming and outgoing lines as
indicated. The part of the link inside the box is called a tangle. If the four
lines are cut and reconnected after a half twist is put on the incoming lines,
and the opposite half-twist on the outgoing lines as in Fig. 9b, we get a new
link K which is called a mutant of K.

Suppose now that we caiculate I,{N) by using (3). We choose the
shading so that spins are placed in the regions on the left and right sides
of the tangle. The orientations of incoming and outgoing lines of the tangle

(
(

N\

(a) b)

Fig. 9. (a) A tangle cut from a link K. (b) The tangle with two half twists added to its lines
to be reconnected to K.
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mean that these are different regions. The summand of the partition func-
tion for K has an extra factor u,(a—b) u_(a—b), where a and b are the
spins in the left and right regions, respectively. By (2c), which comes from
the Reidemeister move, this factor is 1. Hence the link K and its mutant K
have the same partition function and the same invariant.

Note that the above argument is quite general and establishes the
general result that an invariant and its mutant are identical, provided that
the invariant is derivable from an edge-interaction spin model. In par-
ticular, this applies to the Jones polynomial.

8.5. Links with Singular M

In writing down (25) we have assumed that the matrix M is non-
singular, i.e., D7 0. Indeed, we find this condition satisfied by all links with
eight or fewer crossings except 83, and 83. Now the expression n - (Mn) in
the exponent of the summand in (23) is that of a quadratic form over
integral domains of the S —1 variables #;, and the condition D=0 says
that the quadratic form is singular. It can be shown (see, e.g., ref. 27) that
such singular quadratic forms can always be written as regular (non-
singular) ones over fewer integral variables. After changing into these new
variables, the summations in (23) over the / missing variables can be per-
formed, yielding a factor N2, where / is the degeneracy of the zero eigen-
value of M, and the remaining summations can therefore be evaluated
using the Gaussian summation formula.

This procedure can be illustrated in a special case as follows. When
D =0 we know that the rows of the matrix M are not all linearly independent.
This means that there exist real numbers ¢;, i =2, 3,..., S—1, such that
S

-1
M,=-Y eM;, j=12,.,8-1 (35)

[S]

Since M is symmetric, we have also
M, =— Z M. c i=1,2,.,8—-1 (36)

and, after substituting (36) into (35) and setting j=1,

S—1
M, =3 M (37)
ij=2
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1t follows that we have

S—1
n-(Mn)= Y nM;n;
Lj=1
—1

S—1
=nMyn + Y nMjn+ Z nMn;+ Z n,Mn;

j=2 i=2 ij=2

i (c;ny—n;) My(c;ny —ny) (38)

where we have used (35)-(37) in reaching the last step in (38).

Provided that all the ¢, are integers, the expression (38) is now a
quadratic form over S—2 integral variables, effectively crossing out the
first row and first column of the matrix M. If this reduced quadratic form
is again singular, one repeats the process (again assuming integral c;) until
the resulting quadratic form is regular. The expression (23) can then be
evaluated by applying the Gaussian summation identity.

APPENDIX A. THE GENERALIZED GAUSSIAN SUMMATION

In 1808 Gauss®® obtained a remarkable summation identity, now
known as the Gaussian summation formula, which reads

1M e € ‘
Z e(2m/N)n'=__(l+e—mN/2) (Al)

VN V2

The Gaussian summation identity (A1) can be generalized in a number of
ways.!52930) A simple generalization is the identity

1 N—1 1 M—-1
Z em‘an/N + 2riny — ein/d Z e~ wiN(m + y)z/M (AZ)

ﬁn=0 \/_A2 m=0

valid for integral M, N, and N(2y + M)=an even integer, which recovers
(Al) upon taking M =2 and y=0. A multidimensional summation
generalization which we use in arriving at (25} is the following.

Let M be a nonsingular p x p symmetric matrix with integer entries
(positive or negative). We denote by mn=(n,,..,n,), where the n, are
integers, a vector in Z”, and by Mn the vector with components
>F_, M;n;. The collection of vectors {Mn :ne Z*} forms a p-dimensional
sublattice of Z”. Let 4 be a fundamental domain (unit cell) of this
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sublattice. Similarly we define x = (x/,..., x,) where the x; are real, a vector
in the p-dimensional space R?. For all x, yeR”, define

1 T
u(x,y) =WCXP [ﬁx -(Mx) 4+ 2mix - y]
(A3)

exp[ —miNx - (M~ 'x)]

v(x)__l_
_\/B

where D = |det M|. Let #(M) denote the signature of M, which is the num-
ber of positive eigenvalues minus the number of negative eigenvalues of M.
Also let C,, be the set of N” discrete points Cy={neZ”:0<n,<N-1,
i=1,.,p}

For y e R” satisfying the condition

N(2y,+ M ;) =even integer, i=1,..,p (A4)

we have the generalized Gaussian summation formula

Y un,y)=e™M"4 % p(m+y) (A5)

neCy meA

For p=1, (AS) reduces to (A2).

APPENDIX B. TABLE OF INVARIANTS FOR LINKS WITH EIGHT
OR FEWER CROSSINGS

The invariant for a link K is generally given by the expression

NI/2 ) 2D3—-1 )
IK(N) — ( > e:kn/4 Z c(n) e—mnN/Dz (Bl)

where / is the degeneracy of the zero eigenvalue of M, which is equal to
zero unless D=0 as in 83, and 83. The following table gives the values of
[k, D,, D,]{c(n),} with nonzero c(n) listed. For example, the invariant for
the link 7, is

) . . .
[2’ 7, 7]{10, 22, 24’ 28} _’ﬁe,b’/“(l +2€-'2"N/7+2€_'4"N/7+ 2e—:8nN/7)
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The table also lists D=|det M| and w(K)=n, —n_, the number of +
crossings minus the number of — crossings, to specify the direction of line
orientations. Generally, D=Y¥222""'¢(n) (/=0), D, and D, are factors

of D, and, in a few cases, D,=2D.
K D w(K)I¢(N)

303 43 [—2,3,3]{1g, 2,4}
4, 5 0 [0,5,5]1{1q, 25,24}
5 5 +5 [4,55]{1,, 24, 26}
5, 7T +5 [-2,7,71{10, 26, 210, 212}
6, 9 +2 [0,9,9]1{3¢,24,210,216}
6, 11 +2 [—2,11,113{1¢, 24,212,214, 216> 220}
65, 13 0 [0,13,13]{1¢, 25, 2¢, 25, 2135, 2205 224}
2702 42 [1,2,2]{to, 1,}
43 4 —4 [3,4,47{1,, 25, 1,4}
+4 [—1,4,4]{1,, 14, 2;}
51 8 +1 1,2,81{1o, 15,1, 1,5}

[._

61 6 —6 [—3,6,6]{1y, 25,24, 1o}

+6 [_1’ 6’ 6]{107 13’ 28a211}
63 10 +6 [—3,10,10]{1,, ls, 24,212,213, 247}
3 12 —6 [3,12,12]{1y, 24,4, 1,5, 25, 216}

+2 [—1,12,121{1q, 23, 24, 113, 216, 419}

67 12 —6 [2,12,12]{1y, 64,32, 216}

+2 [—2,12,127{34,24, 1,5, 644}
63 16 0 [0,4,4]{2, 3,, 3¢}
67 4 —2 [0,4,4]1{30, 14}

+6 [4,4,4]{1;, 34}
7007 +7 [2,7,7]{1g, 22, 24, 24}
7, 11 +7 [=2, 11, 113{14, 24, 2155 2145 2165 220}
75 13 47 [4,13,131{1q, 24, 210, 2125 214> 2165 222}
70 15 +7 [—2,15,151{1¢, 26, 414> 220> 224> 426 }
75 17 +7 [4,17,177{10, 265 2105 2125 214> 220> 222> 2245 228}
76 19 +3 [_2’ 19, 19]{10a24326’216’220’224’226’ 228’230’ 236}
7, 21 +1 [0,21,217{10, 26, 410, 212, 224> 225> 4345 440}
77 14 =3 [3,14,14]{1,, 20,015,246, 211,215, 246, 293}

+1 [1,14,14]7{1,, 2}, 24, 25, 29, 216, 15y, 225}
73 18 —3 [1,18,1871{30, 25, 25, 395 2175 2205 2295 232}

+1 [0, 18,36]{2,,2,, 39, 255, 231, 249, 255, 363}
73 16 +3 [—1,4,161{1p, 17, 1,5, Lg, 153, 205, 13}
72 16 +3 [-3,4, 161{14, 15, 113, 11, 220, 15y, 129}
73 20 —7 [3,20,20]{1q, 47,2, 212, 215> 120, 423, 2285 232}
+1 [_1’ 207 20]{10a 437 28, 2125 1207 4277 228’ 232’ 235}
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K D w(K)Ig(N)

7% 024 +1 [—1,6,24]{14, 15, 2,,, 115, 157, 233, 235, 244}
724 —1 [—1,4,4]{1,, 14,24}
+7 [_3a 4’4]{127 25’ 16}
7; 8 +3 [—17278]{107177112’115}
73 20 +1 [0,20,5]{3, 65,23, 15,2, 64}
8, 13 +4 [0,13,13]{1y, 25, 24, 25, 215, 220, 224}
82 17 +4 [47 17, 17]{10’ 269210:212:214a220’222’224a228}
8, 17 0 [0,17, 17]{10, 22, 24, 25, 246, 215> 2265 230> 232}
84 19 0 [2, 19’ 19]{10, 22’28,210’212’214a218’222a2329 234}
8s 21 +4 [4,21,211{1y, 265 2125 2145 4205 2245 426> 438}
86 23 +4 [_27 23’ 23]{103210,2l4a2201222’228’ 230723412387
240’ 242’ 244}
87 23 +2 [_2’ 23’ 23]{10’210’214a220s222’2287230a 234’238a
240, 242’ 244}
88 25 +2 [2, 25’ 50]{213$2l7s525’2335237’253, 257’273’2779293’ 297}
89 25 0 [0’ 25’ 25]{50a 22’28’212,21&222a228’232’2389 2421248}
810 27 +2 [_2’ 27a 27]{3072452107216’ 222’228’234’63&
240’ 246a 252}
8, 27 +4 [—2,27,271{30, 24, 2105 216> 222, 228, 234, 036,
240v 2463 252}
812 29 0 [0’ 29’ 29]{10922728’210’212’214’218’ 226’232a240s 244a
246’ 248’ 2507 256}
813 29 +2 [O, 297 29]{10’ 22a28a210’21232143218’2263232’240a244’
246’ 2487 2505 256}
814 31 +4 [_2931a31]{10’ 26’2127 222s224’22692307234, 24212447
246a 248’ 252’ 254a 2581 260}
815 33 +8 [4’ 33’ 33]{10’ 26’4107218’222’224,42832307440’
446’452’ 254}
816 35 +2 [_27 35, 35]{10544’214’416’2307 436a4447446’ 250a
256a 260a 464}
817 37 0 [0’ 37a 37]{10’22, 26’28,214a2185220’ 2229 224s 232a
242’ 250’ 252’ 254’ 256: 260’ 266’ 268’ 272}
818 45 0[0a 45’ 15]{10’ 82788’410a21212187420, 822’828}
8 3 +8 [2,3,3]1{1,2,}
80 9 +2 [0,9,91{30, 2, 25,214}
8, 15 +4 [—2,15151{14, 2,0, 2125 215> 4225 42g}
87 8 +8 [1,2,8]{1p, 1,14, 14}
83 16 +8 [3,4,16]{1q, 15,11, 2, L6, Lyg, 127}

822/78/5-6-6
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K D w(K)Ig(N)

8% 22 -4 [15 22, 22]{10’ 215 24, 259 29’ 212a 2167 2207 225:
L3, 256, 237}
+38 [3’ 227 22]{10’ 23’ 24: 111’212’215721&220’
223a 227’ 231’ 236}
83 24 -4 [1’ 6’ 24]{10’ 13’ 24) 216’ 219a 127, 139’ 243}
+8 [3,6,24]1{10, 25, 1,2, Lys, 2465 228, 2315 130}
8§ 26 +4 [_37 26, 26]{10, 25» 281 1131 220: 2211 224’ 2287 232’ 2337
237, 241, 244,245}
82 20 0 [1’20: 20]{10’41524x49’216’ 120: 224’ 2253226}
+8 [—3,20,20]{1o, 24, 25, 2165 120, 4215 2245 4295 236}
8% 30 0 [_1’30, 30]{10’411’ 115’220’224a235,236’239’4447
2515 456a 459}
+4 ['—3: 30; 30]{10’ ZSv 29’ 220’ 221, 2249 429’ 236: 441,
444’ 145’456}
83 34 +2 [—1,34,347{1q, 24, 25, 215, 2165 2195 2325 235, 2365
243’ 2479 1519 252’ 255’ 259’ 2609 264’ 267}
85 28 —4 [L 28’ 28]{105 41’ 247 28’ 49: 2167 425: 1285 232: 2367 2449 249}
0 [_1’ 28, 28]{22’ 4117 114’ 218a 2'22’ 2307 235’ 142’ 443’
246’2507451}
8%0 32 0 [_19 87 32]{20’ 13’ 1ll’ 212’ 119’ 127, 1359 1439 2449
2485 151, 159}
8%1 28 0 [_1’28) 28]{10’ 24’28a411’216a 128, 232’ 2357 236’
443, 244, 451}
+8 [3,28,28]1{10, 24, 27, 25, 415, 2165 423, 128, 235,
236’ 439’ 244}
8%2 32 +2 [ls 8’ 32]{20’ 137 1113 2]2> 119’ 1271 135’ 1431 244’
2487 1515 159}
8123 40 +2 [_ 11 10’ 40]{10’ 2111 216’ 219’ 135, 244: 251’ 2591
160’ 264! 175’ 276}
8‘1-)4 36 0 [1’ 36’ 12]{103 449 87a 48’ 112,2153 4165420’ 823}
+8 [—3,36,121{1, 25, 44,45, 811, 112, 416, 819, 420}
81 8 0 [-1,2,8]{1y, 15, 115, 1,5}
8% 12 —4 [1,12,12]1{14, 4., 24, 29, 112, 216}
+4 [—1,12,121{23, 16, 240, 115, 419, 222}
87 20 —8 [2,20,10]{1o, 2,43, 47, 25, 110, 212, 215, 245}
0 [—2,20,101{10, 25, 25, 25, L10, 212, 413, 417, 248}
+4 [4,20,101{2, 23, 15,2, 45,415, 243, 115, 2,7}
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K D w(K)I¢(N)

8

8

8

28

28

32

32

36

12

16

32

16

—8

0

+2

—4
+4
+6

0
+8
-1
+2
+4
—4

0
+4
—4

0
+8
—4

0
+8
—4

0
+4
—4

0
+4
—38
—4

0
—4
—4
+4

0
+8

[4, 28’ 14]{10’ 45’ 265 2107 212, 413’ 114’ 417’ 220’
2217 224’ 226}

[07 28’ 14]{10’ 43’ 26’ 27a 210’ 212’ 114’ 419’ 220
224’ 226’ 427}

[_ 1’ 28’ 28]{25s 27’ 213’ 217’ 121’ 4317 233’ 2411
2457 4477 149’ 455}

[2, 28, 7]{10s 63’ 65’ 26: 37a 210’ 212, 613}

[_2’ 28’ 7]{30’ 23’ 25a 66’ 177 6lO’ 612’ 213}

[—3a 28, 28]{25y 213, 617’ 121’ 633: 641’ 2455 349}
[Oa 8a 8]{101 227 23’ 147 25’ 18! 2117 112a 213’ 214}
[4’ 8’ 8]{101 23’ 14’ 25’ 26, 1Ss 210! 211, 112, 213}
[23 85 16]{10a 21: 24’ 183 29’ 212’ 116’ 217s 124’ 225}
[Oa 87 16]{10, 217 24’ 189 29s 116’ 217’ 1249 225: 228}
[_ la 8a 16]{20’ 14’ 25’ 1129 213’ 120a 22“ 224’ 128’ 229}
[2’ 36a 6]{507 22s 103’ 247 56: 47’ 28’ 210’ 4]1}

[0, 36, 61{10,, 2,, 53, 44,25, 24, 44, 59, 2/, }
[—25 36’ 18]{509 43’ 26’ 212’ 415: 5183 224’ 1027’ 230}
[0,4,21{2, 1,, 15}

[_27 41 2]{107 12: 23}

[2, 41 2]{10, 21’ 12}

[2,12,61{2, 2,, 15,44,24, 1o}

[0, 12,6]1{14,4,, 24, 16529, 216}

[4,12,6]1{14, 25,24, 15,44, 2,5}
[2,4,4]{1,4,2,, 25, 14, 25}

[0, 4,41{2,, 1,, 23, ¢, 2,}

['—2, 4’ 4]{10’ 213 14’ 25’ 26}

[3,4,41{1,, 25, 14}, =1

[1,4,41{10,2,, 1,4}, I=1

[—3,4,4]{1,, 14,25}, =1

[3’ 8’ 8]{10’ 43a 34a 38’ 411’ 112}

[1’ 8: 8]{30’ 34, 47’ 18’ 1]27 415}

[_1, 8: 8]{307 437 14’ 18) 411, 312}

[1, 4, 4]{207 319 24a 15}

[_la 4’ 4]{22a 133 265 37}

[—3,4,41{2, 1,24, 35}

[0, 4,11{30, 1,}, =1

[4,4,1]{1,,3,}, /=1
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